翻訳と辞書
Words near each other
・ Kolombari
・ Kolombatovic's goby
・ Kolombatovic's long-eared bat
・ Kolomenskaya (Moscow Metro)
・ Kolomenskoye
・ Kolomensky
・ Kolomensky (inhabited locality)
・ Kolomensky District
・ Kolmogorov backward equations (diffusion)
・ Kolmogorov complexity
・ Kolmogorov continuity theorem
・ Kolmogorov equations
・ Kolmogorov equations (Markov jump process)
・ Kolmogorov extension theorem
・ Kolmogorov integral
Kolmogorov microscales
・ Kolmogorov space
・ Kolmogorov structure function
・ Kolmogorov's criterion
・ Kolmogorov's inequality
・ Kolmogorov's theorem
・ Kolmogorov's three-series theorem
・ Kolmogorov's two-series theorem
・ Kolmogorov's zero–one law
・ Kolmogorov–Arnold representation theorem
・ Kolmogorov–Arnold–Moser theorem
・ Kolmogorov–Smirnov test
・ Kolmogorov–Zurbenko filter
・ Kolmonen
・ Kolmoskanava


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Kolmogorov microscales : ウィキペディア英語版
Kolmogorov microscales
Kolmogorov microscales are the smallest scales in turbulent flow. At the Kolmogorov scale, viscosity dominates and the turbulent kinetic energy is dissipated into heat. They are defined by
\right)^
|-
| Kolmogorov time scale
| \tau_\eta = \left( \frac \right)^
|-
| Kolmogorov velocity scale
| u_\eta = \left( \nu \epsilon \right)^
|}
where \epsilon is the average rate of dissipation of turbulence kinetic energy per unit mass, and \nu is the kinematic viscosity of the fluid. Typical values of the Kolmogorov length scale, for atmospheric motion in which the large eddies have length scales on the order of kilometers, range from 0.1 to 10 millimeters; for smaller flows such as in laboratory systems, \eta may be much smaller.〔George, William K. "Lectures in Turbulence for the 21st Century." Department of Thermo and Fluid Engineering, Chalmers University of Technology, Göteborg, Sweden (2005).p 64 () http://www.turbulence-online.com/Publications/Lecture_Notes/Turbulence_Lille/TB_16January2013.pdf〕
In his 1941 theory, Andrey Kolmogorov introduced the idea that the smallest scales of turbulence are universal (similar for every turbulent flow) and that they depend only on \epsilon and \nu. The definitions of the Kolmogorov microscales can be obtained using this idea and dimensional analysis. Since the dimension of kinematic viscosity is length2/time, and the dimension of the energy dissipation rate per unit mass is length2/time3, the only combination that has the dimension of time is \tau_\eta=(\nu / \epsilon)^ which is the Kolmorogov time scale. Similarly, the Kolmogorov length scale is the only combination of \epsilon and \nu that has dimension of length.
Alternatively, the definition of the Kolmogorov time scale can be obtained from the inverse of the mean square strain rate tensor, \tau_\eta = (2 < E_ E_>)^ which also gives \tau_\eta=(\nu/\epsilon)^ using the definition of the energy dissipation rate per unit mass \epsilon = 2 \nu . Then the Kolmogorov length scale can be obtained as the scale at which the Reynolds number is equal to 1, Re = UL/\nu = (\eta/\tau_\eta) \eta / \nu = 1 .
The Kolmogorov 1941 theory is a mean field theory since it assumes that the relevant dynamical parameter is the mean energy dissipation rate. In fluid turbulence, the energy dissipation rate fluctuates in space and time, so it is possible to think of the microscales as quantities that also vary in space and time. However, standard practice is to use mean field values since they represent the typical values of the smallest scales in a given flow.
==See also==

*Taylor microscale
*Integral length scale
*Batchelor scale

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Kolmogorov microscales」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.